
 ���

Towards Automatic Spell Checking for Arabic

Khaled Shaalan
Computer Science Dept., Faculty of

Computers & Information, Cairo Univ.
5 Tharwat St., Orman, Giza, Egypt

shaalan@mail.claes.sci.eg

Amin Allam
Computer Science Dept., Faculty of

Computers & Information, Cairo Univ.
5 Tharwat St., Orman, Giza, Egypt

aminallam@yahoo.com

AbdAllah Gomah
Computer Science Dept., Faculty of

Computers & Information, Cairo Univ.
5 Tharwat St., Orman, Giza, Egypt.

abdallah_1982@hotmail.com

Abstract

Arabic’s rich morphology (word construction) and complex orthography
(writing system) present unique challenges for automatic spell checking.
An Arabic checker attempts to find a dictionary word that might be the
correct spelling of the misspelled or misrecognized word� In this paper, we
report our attempt in developing an Arabic spelling checker program for
solving this problem. Our approach is heuristic and involves developing
an Arabic morphological analyzer, techniques of spelling checking and
spelling correction, and efficient methods of lexicon operations. The
developed Arabic spell checker is able to recognize common spelling
errors for standard Arabic and Egyptian dialects.

1. Introduction
Arabic is a highly inflected natural language that has enormous numbers of possible
words (Othman et al., 2003). An Arabic spell checker is a program that tries to check
spelling automatically� This device makes it much easier to proofread your documents
and catch all errors. Without it you should proofread and correct your documents in
the old fashioned way—read them yourself� The use of word processors and text
editors leads to a whole class of writing errors (Hahne, 1999). Thus, many popular
word processing software accompany spelling checkers. The role of the spelling
checker— whether integrated or standalone— is to analyze the word and try to catch
these errors.

Arabic spell checking is an active area of research since results are not satisfactory.
This work addresses the challenges of creating a general purpose spelling checker for
Arabic. It recognizes common Arabic spelling errors and offers suggestions for error
correction. This program is useful for anyone who writes: students, business people,
and professional and casual writers. Arabic spelling checker is targeted to be part of
any Arabic text processing programs such as word processors, web browsers, among
others. The tool has been successfully implemented using SICStus Prolog on IBM
PC.

The rest of this paper is structured as follows. In Section 2, we give a brief
background about the relevant aspects of the Arabic language. In Section 3, we
introduce our analysis of the common spelling errors that are used for detecting the
misspelled Arabic word. In Section 4, we describe our proposed method for spelling
correction. In Section 5, we present efficient methods of morphology and lexicon
operations. In Section 6, we give some concluding remarks.

 ���

2. Aspects of Arabic Language
Arabic is strongly structured and highly derivational (Kiraz, 2001). Arabic
morphology and syntax provide the ability to add a large number of affixes to each
word which makes combinatorial increment of possible words (Rafea et al., 1993). In
Arabic, there exist some issues, which need to be taken in considerations when
designing a spell checker: computational morphology, weak and consonant
characters, and morphographemic rules.

2.1 Computational Morphology
Computational Morphology concerns how to derive a new word from an existing one
by adding an affix to the original word (Ramsay et al., 2001). The affix may be prefix,
infix or suffix. In Arabic there are two types of morphology. The process is explained
below with regard to the infix case:
 1. Inflectional Infix Morphology: in which the word category doesn't change.

• ��� (Base) + '�' (Infix) � ���� (The new word is also a verb)
• ��� (Base) + '�' (Infix) � 	
�� (The new word is also a verb)

2. Derivational Infix Morphology: in which the word category changes.
• ��� (Base) + '�' (Infix) � �
��� (The word category changed to a Noun)
• ��� (Base) + '�' (Infix) � ���� (The word class category to a Noun)

2.2 Weak and Consonant Characters
In Arabic, the weak characters ('�', '�', '�') and the Hamza character ('�', '�', '�', '�', '��', '�')
change according to the diacritic sign of the surrounding characters (Buckwalter,
1992). The character in an inflected word is either consonant characters, such as
(��������������
���� �!"
) or weak characters and can be changed such as (����������#�$%���
�&'%). The following are the possible changes:

1- The weak character may be deleted from the word, e.g. (��� � �(�), ()�� � *$
),
and ()�� � + ��)

2- The weak character may be replaced by another weak character or by Hamza
character, e.g. (��, � #��
), (��� � ����), (-�� � .&/
), and (0�1 � 2��
�)

2.3. Morphographemics rules
Some spelling changes are automatically made when when we apply morphology
rules such as adding a suffix to a word:

'-�' (suffix) + ��� (Base) � ��3�� � ��4�� ('-' was replaced by '5').
'-�' (suffix) + �67 (Base) � �897� � �6,7� ('-' was replaced by ',').

3. Analysis of Common Arabic Spell errors
In order to investigate the possibility to develop a computational Arabic spelling
checker, we analyzed and classified the common spelling errors that would occur
when formulating an inflected Arabic word. In the following, we summarize five
sources of spelling errors.

A. Reading Errors: This kind of spelling errors would result when the user types in
from a written source, possibly handwritten, such that she/he misrecognizes a
character and replaces it with another one that looks like it. From the reading
viewpoint, similar characters are grouped into the following categories:
{ �, �, �, 1 }, {�, -, :, 2, �
 }, { ;, <, = }, { ,, > }, {?, 7 }, {@, A }, { B, C }, { 5, D },
{�, E }, {F, G }, { H, I }, {�, � }, and { �, J}. The following are examples of this type
of spelling errors:

 ���

Correct
word

Error Possible Reason

����	� ����
� The character '	' is not written on most keyboards.
���
� ���
� The second dot of the character '�' is not clear.
��� ��� A dot is missed.
��� ��� A dot is added over the character '�' because of the pen ink.
��� ��� A dot is added over the character '�' because of the pen ink.
����� ���� Dots are taken from the above line.
��� ���! A dot may be missed from the keyboard due to heavy use.
"#�$� "#�%� A dot is missed as it is close to the next character�
&��'� &��(A dot may be missed from the keyboard due to heavy use.
�"�� �"# The two dots are very close to each other such that they

appear as a single dot.�
)*+ ,*+ Dots are taken from the above line.
���- ��.� A dash over '�' is considered as a Hamza.

/'
�� 0'
��� The final '1' is written without dots

B. Hearing Errors: This type of spelling errors would results when the human writer
is being dictated; the user may recognize a character as another one. From the hearing
viewpoint, similar characters are grouped into the following categories:
{ �, J }, { �, G }, { -, 5, ,, C }, { @, :, A }, { ;, G }, { >, 7, D }, { ?, �, � }, { K, G },
and { I, H }. The following are examples of this type of spelling errors:

Correct

word
Error Possible Reason

0'2� �'2 The user heard the '�' as '
'.
��3��� ��3�� The dictator uses slang Arabic where '4' is pronounced as '�'.
56��'2 567'2 The user heard the two characters '�', '�' as one character '�'.
�'�� �'�� The speaker is very old.
"8�� "8� The dictator uses upper Egypt dialects where '4' is pronounced as

'9'.
:;�� :;� The dictator didn't get his tongue little out when pronouncing the

character '�'.
<
� <�3 The dictator has some health problems where '�' is pronounced '�'.
=�>?
 =�@?
 The dictator does not pronounce '4' correctly.
�A�B?
 A�B?
C� The character ',' was at the end of the speech and is pronounced as

')'.

C. Touch-Typing Errors: This kind of spelling errors would result from a non-
experienced human typist due to switching a character with another adjacent one
when her/his finger takes wrong position on the keyboard. There are two types of
wrong positioning:

 ��D

1. Shift Right: the right hand is shifted one key to the right, i.e. the right hand is
shifted from the original position 'E', '=', 'F', '�', to the position 'G', 'E', '=', 'F'.

2. Shift Left: the right hand is shifted one key to the left, i.e. the right hand is
shifted from the original position 'E', '=', 'F', '�', to the position '=', 'F', '�', '
'.

The following are examples of this type of spelling errors:

Correct word Error Possible Reason
HI� 5%� The right hand shifted to the right one key.�
H�� J�� The right hand shifted to the left one key.�

D. Morphological Errors: This kind of spelling errors would result from a nonnative
speaker of Arabic or a non well-educated human writer because she/he is not aware of
the Arabic morphology. The following are examples of this type of spelling errors:

Correct
word

Error Possible Reason

-?K�� -?K�� Plural masculine of the past form of the verb L�MNL �

��� ��2
 Imperative form of the verb L��O�L
�L3
 �� Imperative form of the verb �L	O�L �

�'� 0'� Past form of the verb �L#�,L

-'��
-�'� Plural masculine of the past form of the verb L�#�,L �

2�7+
�
-3�7+
 Plural masculine of the past form of the verb�
LJ�36�L �

F-MN3� F-�MN3 Present form of the verb L*P�L
5+-�I�M�OI� 56�I�M�OI Past form of the transitive verb �L*QR�L �

F2��N73 F-3��N73 Plural masculine of the present form of the verb
LJ?�/9L

&'
 -A'
 Single masculine of the mperative form of the verb�
L#"�L

F-!��� F-�!�� Plural masculine of the noun L*���L

E. Editing Errors: This kind of spelling errors would result from typing mistakes due
to edit operations such as insertions, deletions, and substitutions. The following are
examples of this type of spelling errors:

Correct word Error Possible Reason
5A'� 5�A'� The user pressed the character '=' twice.
=�>7�
 =�7�
 The user forgot to write the character '4'.
��� PB�� The user pressed the characters 'Q', 'R' with one press.
&�"?
S=��� &�"?���� The user forgot to type a space between the two words.
Q��7�
� Q�7��
� The user pressed the character '=' before the character '�'.

 ���

4 The Proposed Spelling Correction Method
The first step in spelling correction is the detection of an error. There are two
possibilities:

1. The misspelled word is an isolated word (Non-word), e.g. ‘�S�’ for ‘��S�’
2. The misspelled word is a valid word, e.g. ‘���’ in place of ‘��%.’

We have limited the detection of spelling errors to isolated words. Once the word is
chosen for spelling correction, we perform a series of heuristic steps to find a
replacement candidate for it:

1) Add missing character: The human writer may have missed a character. The
tool tries to add a missing character in every possible position. If the modified
word matches a word in the lexicon, it is added to the list of candidates. For
example, the candidates of the misspelled word "�+ �!�" are "C#��!�", "C���!�",
and "��!�".

2) Replace incorrect character: The human writer may have typed in or heard a
wrong character. The tool tries to replace every character with one of its
neighbors according to the table below. A neighbor's character is either an
adjacent character in the keyboard, a similar character that either looks like it,
or have the same pronunciation. If the modified word matches a word in the
lexicon, it is added to the list of candidates. For example, the candidates of the
misspelled word �L+ !�L�are�L�!�L�TL+ !RL�TL+ !%L�

Character Neighbors

�� �� ��� �� �� �� 1�

��� �� �� �� �� �� 1�

�� U� ��� �� �� 1� �

�� V� �� �� �� 1� �

�� -� �� �� �� 1� J�

�� �� ?� ��� �� �� 1�

1� W� �� �� �� �� �

�� �� �� -� :� 2� �

-� �� 2� :� �� �� �

:� B� G� -� :� 2� ��

;� ,� <� =� � � �

<� =� ;� � � � �

=� <� H� ;� � � �

,� ;� >� C� -� I� �

>� ,� 7� � � � �

?� �� X� 7� �� � �

7� �� D� ?� >� � �

@� A� �� :� � � �

A� @� � � � � �

B� C� � � � � �

C� B� ,� � � � �

5� K� D� -� � � �

 ��T

Character Neighbors
D� 7� 5� � � � �

�� H� E� � � � �

E� F� �� � � � �

F� E� G� � � � �

G� F� :� K� � � �

K� Y� 5� G� � � �

�� �� �� � � � �

Y� K� 2� � � � �

2� Y� -� �� :� �� �

H� �� =� I� -� � �

�� I� 7� �� �� J� ��

J� X� I� �� �� �� �

�� @� �� -� :� 2� J�

I� J� �� H� � � �

3) Remove excessive character: The human writer may have typed in an extra

character. The tool tries to delete a character from every possible position. If
the modified word matches a word in the lexicon, it is added to the list of
candidates. For example, the candidates of the misspelled word "�+ �!�" are
"+ �", "	�".

4) Add a space to split words: The human writer may forget to leave a space
between two words. The tool tries to add the space in every possible position.
If the modified word matches a word in the lexicon, it is added to the list of
candidates. For example, the candidates of the misspelled word "�+ �!�" are
"+ �", "	�".

5. Morphological Analysis and the Lexicon
As Arabic is a highly inflected language, we need to provide methods that are capable
to accelerate the lexicon lookup and the morphological analysis process at runtime. In
this section, we will present efficient methods of storing and looking up Arabic stem.

In our approach, we distinguish between two types of lexicons: Base Lexicon and
Stem Lexicon. The Base Lexicon includes primitive word forms and is used to build
the Stem Lexicon. The Stem Lexicon includes partially inflected Arabic words. This
Lexicon provides efficiency in storing and looking up entries during the spell
checking process because the morphological analysis is simplified.

The Base Lexicon includes Arabic roots such as (GZ�Z�), nouns that cannot be
generated from their roots by regular morphological rules such as (["�Z��3R�Z�I�\�]), and
particles— each with a different set of features. The Base Lexicon entry is represented
as a Prolog term. The following examples show the representation of the words '����3R'
and ' @�� ':

 ��U

['����3R', word_list([word('����3R','[��N�', '�R �̂��',',���Q�', '����������&_', ' �����3̀���a��b&%M9�0��c�
', 'I���c%',
' ��0c�
a3&Pb9 ', ' X���̀�N�a!�O�0c�
 ', ' X�de
�2��0c�
 ', 'a3f����0c�
�', '���O', ' �0
#P9�d �̀�I,�
7�0c�
',
 ' ���a��̀� ���'P̀��0��c�
', Affixes, '��������'('��gf�����U��	��������\
����	��f�
', '��gf�����U��2����������\
����	��f�
',
 'gf��U��	�� eP
', 'gf��U��2���� eP
�X'), ' �QP��)9M9�2��0c�
I, ')])].

['��@', word_list([word('��@','I,��', 'F�eP�', '��!�', ' X��h!f��!f��)"��a%7��0c�
 ',
 ' X��aP�� \!3̀��0c�
 ', 'i3f', '*jhj', 'Y�9', [' @k�Tk�k�Tk� '],
 [('���f�[N�', _),('�#!Q��[N�', _), (',�\���!f', ' ��#8\�"̀�H��P��0c�
', 'J�!3̀�'('Y7X', ' ��#!Q�̀�J�!3',
 '��0&̀#��!Q�̀�J���!3��l&��̀', ' �����̀�J���!3��l&��̀�:hbQ����&�� ')),(' �����
m�����!fZ�� ', ' ����#��8\�"̀�H����P��0��c�
 ',
 'J����!3̀�'('Y7X�l&���̀', '�#���!Q�̀�J����!3�', '0&̀#���!Q�̀�J����!3��l&���̀', ' ������&��Q��:hb���̀�J����!3��l&���̀')),
 (' ����
m�����!fZ���9� '' ��#��8\�"̀�H����P��0��c�
', 'J���!3̀�'(' XY7 ', ' �l&��̀�#��!Q�̀�J���!3� ', '0&̀#��!Q�̀�J���!3��l&��̀',
 ' ��&��Q��:hb̀�J�!3��l&̀'))], Affixes, ' XI,�QP��)9M
�2��0c�
')])].

The Stem Lexicon includes partially inflected Arabic words. These entries are
generated by means of partially morphological generation procedure. The Stem
Lexicon entry is represented as a Prolog term. When we apply the partially
morphological generation procedure to the word '����3R', it will have the same
representation as the one in the base lexicon. However, when we apply this procedure
to the word '��@', partially inflected word forms will be generated such as the word
'�#n'�':

['�#n'�', word_list([word('�#n'�','[N�', '�R �̂',',�Q�', '�
�S�', ' ���3̀���ab&%M9�0c�
', 'I�c%',
 ' �a3&Pb9�0c�
', ' ���̀�N�a!�O�0c�
', ' �de
�2��0c�
', ' 0c�
�a3f���� ', 'o3p�', ' �0
#P9�d �̀�I,�
7�0c�
',
 ' �à� 'P̀��0c�
', Affixes, '�����'('gf��U��	���\
����	f�
', 'gf��U��2�����\
����	f�
',
 'gf��U��	�� eP
', 'gf��U��2���� eP
�X'), 'I,�QP��)9M9�2��0c�
')])].

For efficiency reasons, we represent the lexicon as a letter tree (Covington, 1994).
The following shows a skeletal letter tree for the words (�YhN�� � �Z�I��9���� � ��ZJ,��9�� � �� ��):

ltree([[-� , [Y� , [��, [,� , [J� , props([word(p1:J,��9� � �� �..p2:'[N��� �'...),
 word(p1:J,��9� � �� �..p2:'�!f� � �'...)])]]],
 [?� ,[I�, props([word(p1:I��9�� � �..p2:'[N��� �'...)])]]]],
 ��[@� , [�� , [��, [Y� , ���� props([word(p1:YhN�� � ..p2:'[N��� �'...)])]]]],
 ….
]).

A letter tree is represented in Prolog as list of branches. A branch is a list. The first
element of the list is a letter. Each succeeding element is either another branch, or the
feature structure of the word. The elements are in a specific order: the lexical entry (if
any) comes first, and branches are in alphabetical order by their first characters. The
words are stored in alphabetical order for efficiency purposes.

The spell checker module will use a simple morphological analyzer to ensure that the
input word is a well-formed inflected Arabic word. For example, the morphological
analysis will broke down the inflected word '0&̀#n'�̀�' into the prefix '��', the suffix '0
',
and the stem '�#n'�'. This stem is correct because it has an entry in the stem lexicon.

 ��V

6. Conclusion
In this paper, we report our attempt to develop Arabic spelling checker. This tool is
capable of recognizing and suggesting correction of ill-formed input for common
spelling errors. It is composed basically of Arabic morphological analyzer, lexicon,
spelling checker, and spelling corrector. We have implemented the Arabic spelling
checker tool using SICStus Prolog on IBM PC. The interface is built using Microsoft
Visual Basic. This tool is very useful for automating the proofreading of the human
typed Arabic text. It can be integrated with other text processing software, such as
word processors.

References
1. Buckwalter T. (1992). Orthographic Variation in Arabic and its Relevance to

Automatic Spell-Checking, In the Proceedings of the 3rd International Conference
and Exhibition on Multi-lingual Computing (Arabic and Roman Script),
University of Durham, UK

2. Covington, M. (1994). Natural Language Processing for Prolog Programmers,
Prentice Hall.

3. Hahne H. (1999). Writing Tools, in Using a Computer in Biblical and Theological
Studies, Tyndale Seminary, Toronto. Available at http://www.balboa-
software.com/hahne/harry.html

4. Kiraz G. (2001). Computational Nonlinear Morphology: with Emphasis on
Semitic Languages, Cambridge University Press.

5. Othman E., Shaalan K., and Rafea A. (2003). A Chart Parser for Analyzing
Modern Standard Arabic Sentence, In proceedings of the MT Summit IX
Workshop on Machine Translation for Semitic Languages: Issues and
Approaches, New Orleans, Louisiana, U.S.A.

6. Ramsay A., Mansur H. (2001), Arabic Morphology: A Categorical Approach, In
the proceeding of Arabic NLP Workshop at ACL/EACL.

7. Rafea A., Shaalan K. (1993). Lexical Analysis of Inflected Arabic words using
Exhaustive Search of an Augmented Transition Network, Software Practice and
Experience, 23(6):567-588, John Wiley & sons, U.K., June.

